跳转至

Lec2 for ML-4360

2.1 Primitives & Transformations

\(Homogeneous\)

  • homogeneous coordinates & inhomogeneous coordinates
  • argmented vector[one element out of the whole equivalent class],homogeneous vectors,homogeneous vectors
  • points at infinity Alt text
  • In homogeneous coordinates, the intersection of two lines is given by: \(\tilde{x}\)=\(\tilde{l1}\) × \(\tilde{l2}\) Alt text
  • the line joining two points can be compactly written as: \(\tilde{l}\)=\(\tilde{x1}\) × \(\tilde{x2}\)

\(Transformations\)​​

  • \(\tilde{l}'\) = \((\tilde{H}^T)^{-1}\)\(\tilde{l}\)

d

translation 2DOF

\(\begin{bmatrix}I&t\\0^{T}&1\end{bmatrix}\)

Euclidean 3DOF

\(RR^T=I \ der(R)=1\)

\(\begin{bmatrix}R&t\\0^{T}&1\end{bmatrix}\)

正交矩阵\(A^TA=I\)

  • \(A^{-1}=A^T\)
  • \(\left|A\right|\) = \(+-1\)
  • A的行(列)向量组为n维单位正交向量组
  • 正交变换保持向量的长度与内积不变 \(|\sigma\alpha|=|\alpha|\)

Similarity 4DOF

\(\begin{bmatrix}sR&t\\0^{T}&1\end{bmatrix}\)

\(RR^{T}=I\)

Affine: 6DOF

\(\begin{bmatrix}A&t\\0^{T}&1\end{bmatrix}\)

  • arbitrary \(2×2\) matrix

  • Parallels Remain!

Projective :8DOF

  • preserve straight lines
  • \(\tilde{H}\in R_{3\times 3}\)is an arbitrary homogeneous \(3 × 3\)​ matrix (specified up to scale)

1

2

  • DOF(2D):n(n-1)/2

Direct Linear Transform for Homography Estimation[algorithm DLT

  • Please Refer to Structure from Motion

2.2 Geometric Image Formation

Orthographic projection

An orthographic projection simply drops the z component of the 3D point in camera

coordinates \(x_c\) to obtain the corresponding 2D point on the image plane (= screen) \(x_s\)

  • Scaled -- The unit for s is \(px/m\) or \(px/mm\) to convert metric 3D points into pixels.

\(\bar{x_s}=\begin{bmatrix}s&0&0&0\\0&s&0&0\\0&0&0&1\end{bmatrix}\).

Perspective projection

3

e

Chaining Transformations

\(\tilde{x}_s=K[R \ t]\bar{x}_w\)

Alt text

我的理解:\(\bar{x}_s\)是真实的相机坐标系下的坐标,与\(\tilde{x}_s\)差一个系数,如果我们知道这个系数,就可以恢复出\(\tilde{x}_s\)并根据\(\tilde{x}_s\)的计算方法恢复出世界坐标系下的坐标\(\bar{x}_c\)

2.3 Photometric Image Formation

\(Rendering\ Equation\)

  • intensity :power per solid angle

    \(dw=\sin\theta\)\(d\theta\)\(d\phi\)

  • Irradiance :power per unit area

    E(x)=d\(\Phi(x)\)/dA

  • Radiannce

    \(L(p,w)=d^2\Phi(p,\omega)\)/\(d\omega\)\(dAcos\theta\) Alt text

\(BRDF\) "\(Radiance_{out}/Irradiance_{in}\)"

\(The\ Reflection\ Equation\)

\(L_r(p,w_r)=\int_{H^2}f_r(p,w_i\rightarrow w_r)L_i(p,w_i)cos\theta_id_{w_i}\)

Alt text

Back To Cameras

4

Alt text

5


最后更新: 2024年3月25日 12:53:47
创建日期: 2023年11月4日 10:47:52