跳转至

Deep Learning

  • CNNs have won several competitions
  • ImageNet, Kaggle Facial Expression, Kaggle Multimodal Learning, German Traffic Signs, Handwriting, ….

  • CNNs are deployed in many practical applications

  • Image recognition, speech recognition, Google’s and Baidu’s photo taggers

  • xCNNs are applicable to array data where nearby values are correlated

  • Images, sound, time-frequency representations, video, volumetric images, RGB-Depth images, …

  • CNN is one of the few deep models that can be trained in supervised way.

  • Easy to understand and implement.

What is the neural ?

1

2

Multilayer neural network

3

  • And return to repeat step 1-3 until error is smaller than threshold

Back propagation

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

http://galaxy.agh.edu.pl/%7Evlsi/AI/backp_t_en/backprop.html

4

  • \(\eta\) 学习率

学习率低,收敛慢,容易掉到坑里陷入局部最优;学习率高,可能使得收敛过程不稳定,来回震荡,一直不收敛

idea:

  • 设置不同的学习率,看哪种情况最好
  • 设计一个自适应学习率。此时学习率不再固定,可以通过外在条件算(梯度,学习要有多快,特征权重的大小...)

Deep Learning For Image Understanding

Advantages for convolution

Example:

  • 200x200 image
  • 10 filters of size 10x10
  • 10 feature maps of size 200x200
  • 400,000 hidden units with 10x10
  • fields=1000 parameters

5

为什么引入CNN可以大规模减少权数参数训练量因为CNN通过

1) 局部连接(Local Connectivity)

2) 权值共享(Shared Weights)

3) 池化(Pooling)

  • 来降低参数量

Pooling

CNN池化可以通过池化层来降低卷积层输出的特征维度,在有效减少网络参数的同时还可以防止过拟合现象

https://zhuanlan.zhihu.com/p/78760534

9

CNN in Detail

  • 步长?

  • Refer to the PPT !

  • 传统图像分类:分段;深度学习图像分类:端到端
  • 交叉商

6

  • Minimize Loss - Gradient Descent.


最后更新: 2024年3月25日 12:53:47
创建日期: 2024年1月5日 23:32:29