跳转至

Divide and Conquer

Main Idea

  • Divide the problem into a number of sub-problems
  • Conquer the sub-problems by solving them recursively
  • Combine the solutions to the sub-problems into the solution for the original problem

General recurrence: \(T(N) = aT(N/b) + f(N)\)

1

2

Example

Maximum Subsequence Sum Problem

  • \(O(nlogn)\)
static int MaxSubSum(const int A[],int left,int right){
            int MaxLeftSum, MaxRightSum;
            int MaxLeftBorderSum, MaxRightBorderSum; 
        int LeftBorderSum, RightBorderSum;
        int Center, i;
        if( left == right ){
            if(A[left]>0){return A[left];}
            else{return 0;}
        }
        Center = ( Left +Right ) / 2;
        MaxLeftSum = MaxSubSum( A, Left, Center ) 
        MaxRightSum = MaxSubSum( A, Center + 1, Right );
        MaxLeftBorderSum = 0; LeftBorderSum = 0;
        for(i=Center+1;i>=left;i--){
            LeftBorderSum += A[i];
            if(leftBorderSum>MaxleftBorderSum){
                MaxleftBorderSum = LeftBorderSum;
            }
        }
        MaxRightBorderSum = 0; 
        RightBorderSum = 0;
        for(i=Center;i<=Right;i++){
            RightBorderSum += A[i];
            if(RightBorderSum > MaxRightBorderSum){
                MaxRightBOrderSum = RightBorderSum
            }
    }
    return Max(MaxLeftSum,MaxRightSum,MaxLeftBorderSum+MaxRightBorderSum);
}
int MaxsubsequenceSum( const int A[],intN) {
    return MaxSubSum( A, 0, N - 1 );}

Tree Traversal

Given a postorder traversal of a binary tree, and an inorder traversal of the same tree, we can reconstruct the tree.

  • Example :
    Postorder : DEBFCA
    Inorder   : DBEACF
    
    void BuildTree(int postL, int postR, int inL, int inR){
        if(postL>postR){return;}
        int root = postorder[postR];
        int k;
        for(k=inL;k<=inR;k++){
            if(inorder[k]==root){break;}
        }
        int numLeft = k-inL;
        BuildTree(postL,postL+numLeft-1,inL,k-1);
        BuildTree(postL+numLeft,postR-1,k+1,inR);
    }
    

Closest Points Problem

We are given an array of n points in the plane, and the problem is to find out the closest pair of points in the array. This problem arises in a number of applications. For example, in air-traffic control, you may want to monitor planes that come too close together, since this may indicate a possible collision.

The Brute force solution is \(O(n^2)\) , compute the distance between each pair and return the smallest. We can calculate the smallest distance in \(O(nlogn)\) time using Divide and Conquer strategy.

\(O(n (logn)^2)\)​ approach

Input: An array of n points P[ ]

Output: The smallest distance between two points in the given array.

As a pre-processing step, the input array is sorted according to x coordinates.

1) Find the middle point in the sorted array, we can take P[n/2] as middle point.

2) Divide the given array in two halves. The first subarray contains points from P[0] to P[n/2]. The second subarray contains points from P[n/2+1] to P[n-1].

3) Recursively find the smallest distances in both subarrays. Let the distances be \(d_l\) and \(d_r\). Find the minimum of \(d_l\) and \(d_r\). Let the minimum be \(d\)​​.

4) From the above 3 steps, we have an upper bound \(d\) of minimum distance. Now we need to consider the pairs such that one point in pair is from the left half and the other is from the right half. Consider the vertical line passing through P[n/2] and find all points whose x coordinate is closer than \(d\)​ to the middle vertical line. Build an array strip[ ] of all such points.

4

5) Sort the array strip[ ] according to \(y\) coordinates.

  • This step is \(O(nlogn)\).
  • It can be optimized to \(O(n)\)​​ by recursively sorting and merging.

6) Find the smallest distance in strip[ ]. This is tricky. From the first look, it seems to be a \(O(n^2)\) step, but it is actually \(O(n)\)​​. It can be proved geometrically that for every point in the strip, we only need to check at most 7 points after it (note that strip is sorted according to Y coordinate). See this for more analysis.

7) Finally return the minimum of d and distance calculated in the above step (step 6)

// A divide and conquer program in C/C++ to find the smallest distance from a
// given set of points.

#include <stdio.h>
#include <float.h>
#include <stdlib.h>
#include <math.h>

// A structure to represent a Point in 2D plane
struct Point{
    int x, y;
};

// Needed to sort array of points according to X coordinate
int compareX(const void* a, const void* b){
    Point *p1 = (Point *)a, *p2 = (Point *)b;
    return (p1->x - p2->x);
}
// Needed to sort array of points according to Y coordinate
int compareY(const void* a, const void* b){
    Point *p1 = (Point *)a, *p2 = (Point *)b;
    return (p1->y - p2->y);
}

// A utility function to find the distance between two points
float dist(Point p1, Point p2){
    return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
                (p1.y - p2.y)*(p1.y - p2.y)
            );
}
// A Brute Force method to return the smallest distance between two points
// in P[] of size n
float bruteForce(Point P[], int n){
    float min = FLT_MAX;
    for (int i = 0; i < n; ++i)
        for (int j = i+1; j < n; ++j)
            if (dist(P[i], P[j]) < min)
                min = dist(P[i], P[j]);
    return min;
}

// A utility function to find a minimum of two float values
float min(float x, float y)
{
    return (x < y)? x : y;
}

// A utility function to find the distance between the closest points of
// strip of a given size. All points in strip[] are sorted according to
// y coordinate. They all have an upper bound on minimum distance as d.
// Note that this method seems to be a O(n^2) method, but it's a O(n)
// method as the inner loop runs at most 6 times
float stripClosest(Point strip[], int size, float d)
{
    float min = d; // Initialize the minimum distance as d

    qsort(strip, size, sizeof(Point), compareY); 

    // Pick all points one by one and try the next points till the difference
    // between y coordinates is smaller than d.
    // This is a proven fact that this loop runs at most 6 times
    for (int i = 0; i < size; ++i)
        for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
            if (dist(strip[i],strip[j]) < min)
                min = dist(strip[i], strip[j]);

    return min;
}

// A recursive function to find the smallest distance. The array P contains
// all points sorted according to x coordinate
float closestUtil(Point P[], int n)
{
    // If there are 2 or 3 points, then use brute force
    if (n <= 3)
        return bruteForce(P, n);
    // Find the middle point
    int mid = n/2;
    Point midPoint = P[mid];
    // Consider the vertical line passing through the middle point
    // calculate the smallest distance dl on left of middle point and
    // dr on right side
    float dl = closestUtil(P, mid);
    float dr = closestUtil(P + mid, n-mid);
    // Find the smaller of two distances
    float d = min(dl, dr);
    // Build an array strip[] that contains points close (closer than d)
    // to the line passing through the middle point
    Point strip[n];
    int j = 0;
    for (int i = 0; i < n; i++)
        if (abs(P[i].x - midPoint.x) < d)
            strip[j] = P[i], j++;

    // Find the closest points in strip. Return the minimum of d and closest
    // distance is strip[]
    return min(d, stripClosest(strip, j, d) );
}

// The main function that finds the smallest distance
// This method mainly uses closestUtil()
float closest(Point P[], int n)
{
    qsort(P, n, sizeof(Point), compareX);

    // Use recursive function closestUtil() to find the smallest distance
    return closestUtil(P, n);
}

// Driver program to test above functions
int main(){
    Point P[] = { {2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};
    int n = sizeof(P) / sizeof(P[0]);
    printf("The smallest distance is %f ", closest(P, n));
    return 0;
}

\(O(nlogn)\)​ approach

Solving Recurrences

Substitution method : Guess and prove by induction

Makeing a good guess

9

3

Recursion-tree method

  • Guess a bound for the substitution method 5 6

Master method

  • \(N^{\log_ba}\) is "number of leaves" in the recursion tree. 8

7

Proof

Case 1 If \(f(N) = O(N^{\log_ba-\epsilon})\) for some \(\epsilon > 0\), then \(T(N) = \Theta(N^{\log_ba})\)

Proof:(Refer to Slides)

\[\begin{align*}\sum_{i=0}^{\log_bN-1}a^if(N/b^i) &= O(N^{log_b{a-\epsilon} }\frac{b^{\epsilon log_bN}-1}{b^\epsilon-1})\\&=O(N^{\log_ba-\epsilon}N^{\epsilon})\\&=O(N^{\log_ba})\end{align*}\]

Therefore : \(T(N) = \Theta(N^{\log_ba})+O(N^{\log_ba}) =\Theta(N^{\log_ba})\)

Case 2 If \(f(N) = \Theta(N^{\log_ba})\), then \(T(N) = \Theta(N^{\log_ba}\log N)\)

Proof

\[\begin{align*}\sum_{i=0}^{\log_bN-1}a^if(N/b^i) &= \sum_{i=0}^{\log_bN-1}a^i\Theta((\frac{N}{b^i})^{\log_ba})\\&=\Theta(N^{\log_ba}\sum_{i=0}^{\log_bN-1}(\frac{a}{b^{log_ba} })^i)\\&=\Theta(N^{\log_ba}\sum_{i=0}^{\log_bN-1}(1)\\&=\Theta(N^{\log_ba}\log N)\end{align*}\]

Therefore : \(T(N) = \Theta(N^{\log_ba}\log N) + O(N^{\log_ba}) = \Theta(N^{\log_ba}\log N)\) Case 3 If \(f(N) = \Omega(N^{\log_ba+\epsilon})\) for some \(\epsilon > 0\), if \(af(N/b) \leq kf(N)\) for some \(k<1\) and sufficiently large \(N\), then \(T(N) = \Theta(f(N))\)

Proof

\[\begin{align*}\sum_{i=0}^{\log_bN-1}a^if(N/b^i) &= \Omega(N^{\log_ba+\epsilon}\frac{b^{\epsilon log_bN}-1}{b^\epsilon-1})\\&=\Omega(N^{\log_ba+\epsilon}N^{\epsilon})\\&=\Omega(N^{\log_ba+\epsilon})\end{align*}\]

Therefore : \(T(N) = \Theta(f(N))\)


最后更新: 2024年4月27日 14:34:39
创建日期: 2024年4月8日 20:53:11